THE EXISTENCE OF BEHAVIOURAL FACTORS AMONG INDIVIDUAL INVESTORS FOR INVESTMENT DECISION IN STOCK MARKET: EVIDENCE FROM INDIAN STOCK MARKET

Swati Mehta

Dr. Jaydip Chaudhari

ABSTRACT

Generally classical economics & financial theories consider people to be rational. CAPM, EHM etc. theories are also based on this assumption. But so many times, this assumption has been challenged. After looking anomalies in financial market, classical theories are put under the challenge for assumption of rationality. Behaviour finance integrates economic principles with psychological influences of human behaviour in the investment decision. The main purpose of study is to explore which behavioural factors influencing individual investors' decision at Indian stock market. This study also tries to find out the correlation between these behaviour factors and investment performance. Study also finds out correlation between behaviour factors and investment decision & investment strategies. This research covers certain factors like representativeness, overconfidence, anchoring, gambler's fallacy, hot hand fallacy, regret, cognitive bias, herding, etc. Primary data for analysis was gathered by preparing questionnaire & distributing among investors. Result obtained by covering sample of 60 respondents.

Keywords: Behaviour Finance, Investment Decision, Indian Stock Market (BSE and NSE).

I. INTRODUCTION

Finance is a study of how limited resources are allocated & how they are utilised efficiently. There are 2 key assumptions which are found in traditional theory of finance i.e people are rational, they are interpreted available information correctly & uniformly. Efficient market implies that EMH (efficient Market Hypothesis) states all relevant information are reflected in the prices completely. EMH which supports the opinion that actual prices reflect fundamental values, affirms that prices are right as they are determined by agents, who are sensible preference and understand Bayes' law, which relates to conditional probabilities. According to EMH, although not all investors are rational, markets are assumed to be rational.

After finding anomalies, researchers in psychology were discover that people often behave in irrational ways while taking decision. Psychologists have found that economic decisions are more often taken in irrational manner. After finding some anomalies , traditional theories CAPM, EMH and other could not explain. Unfortunately, so many researches which could not confirm theories from investment data. So, Behaviour finance field has emerged in the response to problems faced by traditional theories. Schinder(2007) lists 3 main cornerstones for research in behaviour finance i.e psychology, sociology & finance. It can be difficult for rational traders to undo the dislocations caused by less rational traders. (Barberis & Thaler, 2003). Behaviour finance study has introduced the investment in the response to problems faced by traditional theories .(Kishore, 2004) argues that investment choices are not always made on the basis of rationality, and it is possible to understand market by relaxing 2 doctrines of traditional theories 1) agent fails to update their beliefs correctly 2) there is systematic deviation from normative process in making investments choices.

Daniel Kahneman & Amos Tversky, recognised as father of Behavioural Finance. In the 1960s Kahneman and Tversky were focused on different lines of research & came together in the 1970s to create what were to be the benchmarks in the field.

Tversky & Kahneman, by developing the prospect Theory, implied how risk & uncertainty are managed. The theory explains irregularity in human behaviour when assessing risk under uncertainty. It says that investors are not always risk-averse, they are generally risk averse in gain but risk takers in losses.

Tversky & Kahneman identified the influence some human heuristics on decision making process. Individual generally use heuristics or say short cut that try to reduce complexity of problem.

1 one wing con	Tonowing constructs are used in this study.					
Construct	Meaning	Researcher				
Overconfide	It can be summarized as unwarranted faith	Pompian(2006)				
nce bias	in one's intuitive reasoning, judgements, &					
	cognitive abilities.					
	It pertains to how people understand their					
	own abilities & limits of their knowledge	Shefrin(2000)				
Representati	Assessment of degree of correspondence	Gilovich et al				
veness	between a sample & population, an instance	(1983)				
	& category, an act & an actor or, more					
	generally between outcome & a model					
	The tendency of decisions of investors to					
	make based on experiences is known as	Shefrin (2000)				

II. REVIEW OF LITERATURE

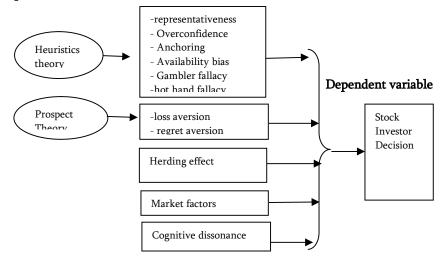
Following constructs are used in this study.

The Existence of Behavioural ... Swati Mehta and Dr. Jaydip Chaudhari 59

	stereotype kind behavior	
Anchoring	It can be explained by tendency of investors	Pompian(2006)
Anchoring bias	to "anchor" their thoughts to logically	kahneman and
Dias	с с ,	
	irrelevant reference point while making	Tversky (1974)
TT 1.	decision	
Herding	Investors apply to herding behaviour	(scharfstein stein,
bias	because they are concerned 0f what others	1990)
	think of their investment decision	
	The behaviour of an investor imitating the	Hirsh leifer &
	observed actions of others or the movements	Teoh (2003)
	of market instead of following her own	
	beliefs & information.	
Cognitive	Cognitive bias is the mental conflict that	(Montier, 2002)
bias	people experience when they are presented	
	with evidence that their beliefs or	
	assumptions are wrong.	Pompian (2006)
	There are 2 identified aspects of cognitive	
	bias 1) selective perception : where investors	
	only register information, which affirms	
	their beliefs thus creating an incomplete	
	view of real picture 2) selective decision	
	making : investors are likely to reinforce	
	commitments previously made even though	
	it might be visible that it is the wrong thing	
	to do.	
Disposition	An investor's tendency to sell stocks that	shefrin &
effect	gained value to hold on to stocks that lost	Statman (1985)
	value.	
Gambler's	Incorrect belief in the negative auto	Laplace (1796)
fallacy	correlated of non-auto correlated random	
	sequences	
Hot hand	As people exhibit gambler's fallacy , which	
fallacy	is a tendancy to predict the opposite of last	
ianac y	event (negatively) & they also express	
	beliefs that certain events will be repeated (
	positively) that is known as hot hand fallacy.	
	Incorrect belief that certain random	Gilovich et. al
	sequences may in fact be non-random ((1985)
	human related) & therefore positively auto	
	correlated.	

GJRIM Vol 6, No 1, June 2016 60

Regret bias	People who are regret averse tend to avoid	Pompian (2006)
	distress arising out of two types of mistakes	
	1) error in commission – which occur as a	
	result of misguided action where investors	
	reflects on this decision. 2) error of omission	
	which occur as a result of missing an	
	opportunity which existed	


III. METHODOLOGY

A) Research Objectives:

- 1. To identifying possible factors influencing the investment decision of individual investors at the Indian stock Market.
- **2.** To study impact of behaviour factors on the investment decision making at stock market.

B) Conceptual Model

Independent variables (behavioural biases)

C) Research hypothesis:

- 1. What are the behavioral variables influencing individual investors' decisions at the Indian Stock Exchange and which factors do they belong to?
- 2. At which impact levels do the behavioral factors influence the individual investors' decisions at the Indian Stock Exchange?

D) Research Design:

Study used descriptive research design. The major purpose of descriptive research design is to describe phenomena at given period of time at present. Mungenda & Mugenda (1999) described Descriptive research as a process of collecting data in order to answer questions concerning the status of subjects in study. So this design is appropriated in study because it ensured depth analysis & description of various phenomena.

When cross-sectional design is employed, data from more than one case at one single time is collected & analysed. The patent of association is then examined by using the collected quantitative or quantifiable data (Saunders et al. , 2009). This is relevant to this study.

E) Data collection tools & procedure

Primary data are collected by preparing questionnaire consists of **36 questions out of which question 7-**12 questions were used to measure individual investment decision 13-36 questions were used to measure behavioural biases for which 5 points Likert scale had used .

Study includes only primary data which were gathered using questionnaire which was distributed both offline & online. Questionnaires were circulated to brokerage house's dealers as well as its clients. Some questionnaires were circulated to the persons directly who were dealing in stock market. For the study, sample size is taken 60.

Behavioural		Questions	Variable
factors			
Heuristic factor	Representative	Question no. 13 -1	X 13 -X1 4
		4	
	Over-confidence	Question no. 15-17	X15-X17
	Anchoring	Question no. 18-19	X18- X19
	Availability bias	Question no. 22-23	X 22-X23
	Gambler's fallacy	Question no. 34	X34
	Hot hand fallacy	Question no. 35-36	X35-X36
Cognitive	Cognitive bias	Question no. 20-21	X20-X21
dissonance			
Prospect theory	Loss aversion	Question no. 24-25	X 24-X25
	Regret aversion	Question no. 26-27	X26- X27
Market	Price changes	Question no. 7-12	X7-X12
	• Market information		

Behaviour factors and question numbers

GJRIM Vol 6, No 1, June 2016 62

	• Past trends of		
	stocks		
	• Fundamentals of		
	underlying stocks		
	• Customer		
	preference		
	Over-reaction to		
	price changes		
Herding		Question no. 28-31	X28-X31

IV. DATA ANALYSIS & HYPOTHESIS TESTING

A) Factor Analysis

One of the most widely used techniques for data reduction is factor analysis. According to Luck and Rubin (2003), factor analysis seeks to identify a set of dimensions that is not readily observed in a large set of variables. The analysis summarizes a majority of the information in the data set in terms of relatively new few categories, known as *factors*. Two basic reasons for using factor analysis are (i) to simplify a set of data by reducing a large number of measures for a set of respondents to a smaller manageable number of factors and (ii) to identify the underlying structure of the data in which a large number of variables may really be measuring a small number of basic characteristics of the sample.

For this study, factor analysis is used to reduce the number of variables that are used to measure the influence level of respondents. Respondents were asked to rate 30 statements on their influence level ranging from level 1 (strongly agree) to level 5 (strongly disagree)

In this study, question from 7 to 36 of questionnaires, which are coded from X7 to X36, are designed to explore the level of behavioural variables impact on the individual investment decision at the Indian stock Exchange. The exploratory factor analysis (EFA) is used for the behavioral variables (X7 to X36) to identify the factors which these variables belong to.

The requirements of factor analysis are satisfied to reduce the variables. After some rounds of removing the unsuitable variables, the analysis results that the remaining variables are grouped into six factors.

B) Bartlett's test of Sphericity

Bartlett's test of sphericity is a test statistic used to examine the hypothesis that the variables are uncorrelated in the population. In other words, the population correlation matrix is an identity matrix; each variable correlates perfectly with

itself but has no correlation with the other variables under study. Refer **Annexure(A)** :**Table : 1 KMO and Bartlett's Test**

As shown in above **Table : 1 KMO and Bartlett's Test**, the significance value of Bartlett's Test is 0.000, this leads to rejection of the idea that the correlation matrix is identity matrix.

The Kaiser-Meyer-Olkin (KMO) measure for sampling adequacy is an index used to examine the appropriateness of factor analysis. It compares the magnitudes of observed correlation coefficients to magnitude of partial correlation coefficients. The KMO value varies from 0 to 1. High value (0.5 and 1.0) indicates factor analysis is appropriate. Small values of KMO Statistic indicate that correlations between pair of variables cannot be explained by other variables, and hence, factor analysis is not suitable. As shown Table:2, The KMO value found for this study is 0.608, which is nearer to 1. Hence, this value is acceptable and justifies the appropriateness of factor analysis.

C) Variance explained

It is required that the scale constructed and the components extracted should be able to explain maximum variance in the data. For this, an analysis of the Eigen values is required. Eigen value represents the total variance explained by each factor. Kindly refer 'Annexure(A) :Table:2 **Total Variance Explained'.** It shows the Eigen values of all the variables that can be extracted. The table also shows the cumulative variance. However, it is required that the maximum amount of variance should be explained in minimum number of components – for this reason extraction of the components is required. Ideally only those factors are extracted for which the Eigen values are greater than one, but for the present study, factors having Eigen value greater than 1.10 are considered. Thus, the factors extracted in the study are six in number and together contribute 87.02% of total variance. This is a fair percentage of variance to be explained and assumes of the appropriateness of the factor analysis.

D) Rotation Matrix

In such a complex matrix, it is difficult to interpret the factors. Therefore, through rotation, the factor matrix is transformed into a simpler one that is easier to interpret.

There are various methods for rotation.

The method of rotation used for this study is VARIMAX, which is the most commonly used rotation method. The variance explained by each component

before and after the rotation method and it is shown in Annexure(A) : Table 3 : Rotated Component Matrix

By this method, it was found that some variables are not clubbed under any of the factor and they are considered as independent variables. Remaining variables have the factor loading more than 0.5; therefore they are considered for loading on extracted six factors.

E) Measurement reliability test using Cronbach's alpha

In this part, Cronbach's Alpha is used to test the reliability of items included in the factors,

which are identified in the factor analysis. This test is done to make sure that the measurements are reliable for further uses. The results of Cronbach's alpha test are shown

in the *Table 4.* Calculation of Cronbach's alpha and its associate statistics are shown in ANNEXURE(A).

Table 4 presents that Cronbach's Alpha indexes of all factors are greater 0.6, and the corrected item-total correlation of all items are more than 0.30. Besides, Cronbach's alpha of each factor if its any item is deleted is less than the factor's Cronbach's Alpha, as well as the significant of F test for each factor, a kind of test to make sure the suitability of using Cronbach's Alpha technique for the data, is less than 0.05. These indexes show that items included in the factors: Herding, Prospect, Market, Overconfidence, Anchoring, loss aversion and regret bias. Kindly also refer **Annexure (B)** for statistical calculation of reliability test of Cronbach's Alpha for all loaded factors with their significant table.

F) Impact of variables on investment decision making

The impact levels of behavioural variables on the investment decisions are identified by calculating the values of sample mean of each variable. In this part, only variables, which meet the requirements of above factor analysis and Cronbach's alpha test, are chosen to demonstrate their scores. Because 5-point scales are used to measure the impact levels of these variables, the mean values of these variables can decide their impact levels on the investment decision making as the following rules:

□ □ Mean values are less than 1 shows that the variables have very high impacts

 \Box \Box Mean values are from 1 to 2 shows that the variables have high impacts

 \Box \Box Mean values are from 2 to 3 shows that the variables have moderate impacts

 \square \square Mean values are from 3 to 4 shows that the variables have low impacts

 \square \square Mean values are more 4 shows that the variables have very low impacts

Factor		Variable	Mean	Std. deviation
Dreament	I and averation	V24. were eve talving more viel	2.20	0.798
Prospect	Loss aversion	X24: you are taking more risk	2.20	0.798
		after gaining from previous holding		
	T	0	2.20	0.020
	Loss aversion	X25: you are trying to avoid	2.30	0.830
		risk after losing from		
	D .	previous holding	1.00	0.640
	Regret	X26: you tend to hold on to	1.88	0.640
		securities losing value		
		waiting for better time.		
	Regret	X27: you feel more sorrow	1.93	0.607
		because of holding lose		
		making stock too long than		
		by selling gaining stock too		
		soon.		
Heuristic	Overconfidence	X15: you accept that your	2.67	0.933
		skill and knowledge for stock		
		market is good & it helps to		
		outperform in the market.		
		X16: you believe that you can	2.55	0.910
		predict future share price		
		better than other.		
		X17: you can go ahead with	2.65	0.880
		your valuation of share		
		whether it is different from		
		well-known experts on some		
		financial news channel or		
		papers.		
	Anchoring	X18: you mostly rely on	2.60	0.924
		company recent financial		
		data when making		
		investment decision		
		X19: you value company's	2.67	0.877
		recent information over		
		historical one		
Market		X8: you have immediate	2.63	0.863
		reaction to price change of		
		stocks		

GJRIM Vol 6, No 1, June 2016 66

	X9: you give importance to market information before making investment	2.75	0.932
	X10: you consider past trend of stock for your investment.	2.73	0.936
Herding	X29: Your investment decision is influenced by other investors' decision for deciding stock volume.	3.18	0.930
	X31: you usually react quickly to the change of other investors' decision and follow their reactions to the stock market.	2.77	0.909

IV. FINDINGS

In the dimension of Prospect, all its 2 kinds of behavior: loss aversion, regret aversion and metal accounting have their representative variables influencing the decision making of investors' stock investment. Individual investors have loss aversion (x24, X25) at moderate degree and regret aversion (X26, X27) high degree, with the means of each variable of 2.20, 2.30,1.88, 1.93 respectively.

In the dimension of heuristic, only its 2 kinds of behavior: overconfidence, anchoring have their representative variables influencing the decision making of investors' stock investment. Individual investors have overconfidence (x15, X16, X17) and anchoring (X18, X19) moderate degree.

In the dimension of market, Changes of stock price, market information and past trends of stocks are the variables of market that influence the individuals' investment decisions. Market factor highly impacts on the investment decision making of individual investors due to the means of changes of stock price (X8), market information (X9) and past trends of stocks (X10) are respectively 2.65, 2.75, 2.73 respectively. This means the individuals tend to consider the information of stock market: general information, past trends of stock price and current stock price changes carefully before making their investment.

As in the, individual investors follow highly the other investors' trading decisions. They more tend to consider the others' behaviours of choosing types of stock as well as others' decisions of buying and selling stocks to make their own decisions.

V. CONCLUSION

The study is finished by giving all the answers for the research objectives. This means the research objectives are done and the hypotheses are tested. The following part gives the conclusions for the study by presenting the main points to answer the research questions:

What are the behavioral variables influencing individual investors' decisions at the Indian stock Exchange and which factors do they belong to?

There are five behavioral factors that impact the investment decisions of individual investors at the Indian stock Exchange: Herding, Market, Prospect, Overconfidence, and Anchoring. The herding factor includes two behavioural variables: following the decisions of the other investors (buying and selling; choice of trading stocks). The market factor consists of three variables: price changes, market information, and past trends of stocks. The prospect factor possesses two variables that have significant impacts on the investment decision making: loss aversion, regret aversion. whereas, the heuristic variables are grouped into two factors: overconfidence and anchoring as mentioned above.

At which impact levels do the behavioural factors influence the individual investors' decisions at the Indian Stock Exchange?

Most of the mentioned behavioral variables of four factors: Heuristic, Prospect, and Herding have moderate impacts on individual investors' decision making at Indian stock Exchange. Regret factor has high impact on investment decision.

VII) Further research

This study is one of the volunteers using behavioral finance in Indian stock Market with the measurements of 5-point Likert. It is necessary to have further researches to confirm the findings of this research with the larger sample size and the more diversity of respondents. The further researches are also suggested to apply behavioral finance to explore the behaviours influencing the decisions of institutional investors at the Stock Exchanges of Indian capital market. These researches can help to test the suitability of applying behavioural finance for all kinds of security markets with all components of investors.

REFERENCES

Barber, Brand M., and Odean, Terrance. (1999). FinancialAnalysts Journal 55(6).

Barberis, Nicholas. And Thaler, Richard.(2003). A Survey of Behavioural finance . Handbook of the Economics of Finance. Elsevier Science .1054-1056.

Chandra Abhijit. (2008). Decision making in the stock market : Incorporating Psychology with Finance. New Delhi.

Chen, Gongmeng, kim, Kenneth A., Nofsinger, John R., and Rui, Oliver M. (2007). Trading performance, Disposition effect, overconfidence, representativeness bias, and experience of Emerging Maket Investors. http://papers.srn.com/sol3/papers.cfm?abstract_id=957504.

Cianci, Anna M. (2008). The Impact of Investor Status on Investors' Evaluation of Negative and positive , separate and combined information. The journal of Behavioral finance. 117-131.

Gilovich, Thomas, Griffin, Dale., and Kahneman, Daniel. (2002). Heuristics and Biases : The psychology of Intuitive Judgement. Cambridge : Cambridge University Press.

Maheran, Nik., Muhammad, Nik., Imail, Nurazleena. (2008). Investment Decision Behavior: Does Investors rational or Irrational? Faculty of business Management, Mara University of Technology, Malaysia.

Pompian Michael M. (2006). Behavioural Finance and wealth Management . USA: John wiley & sons.

Sewell, Martin. (2007). Behavioural Finance. http://www. Behaviouralfinance.net/behavioural finance.pdf.

Thaler, R. & Shefrin, H. (1981). An economic theory of self-control, Journal of political economy, 89(2).

Waweru, Nelson Maina., Munyoki, Evelyne ., and Uliana, Enrico. (2008). The effect of behavioural factors in investment decision making: a survey of institutional investors operating at the Nairobi Stock Exchange. International Journal of Business and Emerging Market . 1 (1) : 24-41.

Annexure (A)

Table : 1 KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy.	.608
Bartlett's Test of Sphericity Approx. Chi-Square	512.418
Df	91
Sig.	.000

Table : 2	Table : 2 :Total Variance Explained								
				Extract	tion Su	ms of	Rotati	on Su	ms of
	Initial Eig	genvalue	S	Square	d Loading	S	Squar	ed Loadin	gs
		% of							
Compo		Varian	Cumulat		% of	Cumula		% of	Cumulat
nent	Total	ce	ive %	Total	Variance	tive %	Total	Variance	ive %
1	3.248	23.200	23.200	3.248	23.200	23.200	2.630	18.786	18.786
2	2.738	19.559	42.759	2.738	19.559	42.759	2.628	18.774	37.560
3	2.067	14.768	57.527	2.067	14.768	57.527	1.972	14.084	51.644
4	1.755	12.537	70.064	1.755	12.537	70.064	1.736	12.400	64.044
5	1.238	8.842	78.905	1.238	8.842	78.905	1.647	11.765	75.809
6	1.136	8.115	87.020	1.136	8.115	87.020	1.570	11.211	87.020

Table 3	Table 3 : Rotated Component Matrix						
	Factor loading						
	1	2	3	4	5	6	
x8	.925						
x9	.902						
x10	.944						
x15		.907					

GJRIM Vol 6, No 1, June 2016 70

x16		.925				
x17		.922				
x18			.964			
x19			.955			
x24				.908		
x25				.899		
x26						.831
x27						.855
x29					.880	
x31					.877	
	Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.					

Table : 4 labelling of factors and Cronbach's Alpha Test for loaded Factors

Factors	Variables	Cronbach's	Correlated	Cronbach's	F(Sig.)
		alpha	item –	alpha if	
			total	item	
			correlation	detected	
Herding	X29	0.745	0.593	-	15.144(0.000)
	X31		0.593	-	
Regret	X26	0.669	0.503	-	14.387(0.000)
(prospect					
theory)					
	X27		0.503	-	
Loss aversion	X24	0.824	0.701	-	15.144(0.000)
(prospect					
theory)					
	X25		0.701	-	
Overconfidence	X15	0.917	0.825	0.88	12.352(0.03)
	X16		0.817	0.89	
	X17		0.854	0.88	
Anchoring	X18	0.958	0.921	-	14.034(0.009)
_	X19			-	
Market	X8	0.923	0.819	0.910	13.984(0.034)
	X9		0.831	0.900	
	X10		0.886	0.854	

Annexure (B) Reliability test of loaded behavioural biases factors A) Herding factors :

Reliability Statistics

Cronbach's Alpha	Cronbach's Alpha Based on Standardized Items	N of Items
.745	.745	2

	Summary Item Statistics										
	Mean	Minim um	Maxim um	Range	Maximum / Minimum	Varia nce	N of Items				
Item Means	2.975	2.767	3.183	.417	1.151	.087	2				
Item Variances	.845	.826	.864	.038	1.046	.001	2				
Inter-Item Covariances	.501	.501	.501	.000	1.000	.000	2				
Inter-Item Correlations	.593	.593	.593	.000	1.000	.000	2				

Item-Total Statistics									
	Scale								
	Mean if	Scale	Corrected	Squared					
	Item	Variance if	Item-Total	Multiple	Cronbach's Alpha				
	Deleted	Item Deleted	Correlation	Correlation	if Item Deleted				
x29	2.77	.826	.593	.352	a •				
x31	3.18	.864	.593	.352	a •				
TT 1	1 .	1 .			•				

a. The value is negative due to a negative average covariance among items.

ANOVA								
		Sum of Squares	df	Mean Square	F	Sig		
Between People		79.425	59	1.346				

GJRIM Vol 6, No 1, June 2016 72

Within People	Between Items	5.208	1	5.208	15.144	.000
	Residual	20.292	59	.344		
	Total	25.500	60	.425		
Total		104.925	119	.882		
Grand Mean = 2.98						

B) Reliability test for Regret Aversion (prospect theory)

Cronbach'	Cronbach's Alpha Based	
s Alpha	on Standardized Items	N of Items
0.669	0.669	2

	Item-Total Statistics									
	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Squared Multiple Correlation	Cronbach's Alpha if Item Deleted					
x26	1.93	.368	.503	.253						
x27	1.88	.410	.503	.253						
a. The v	a. The value is negative due to a negative average covariance among items.									

ANOVA								
			Sum of Squares	df	Mean Square	F	Sig	
Between People		64.492	59	4.585				
Within	Between Items		.075	1	2.075	14.387	.000	
People	Residua	1	11.425	59	.194			
	Total		11.500	60	.192			
Total			75.992	119	.386			
Grand Mean = 2.31								

c) Reliability Test of Loss Aversion	(prospect theory factor) :
--------------------------------------	----------------------------

Reliability Statistics						
	Cronbach's Alpha Based on					
Cronbach's Alpha	Standardized Items	N of Items				
.824	.824	2				

	Item-Total Statistics								
	Scale Mean	Scale	Corrected	Squared					
	if Item	Variance if	Item-Total	Multiple	Cronbach's Alpha if				
	Deleted	Item Deleted	Correlation	Correlation	Item Deleted				
x24	2.30	.688	.701	.492	a •				
x25	2.20	.637	.701	.492	a •				

a. The value is negative due to a negative average covariance among items.

		Sum of Squares	df	Mean Square	F	Sig
Between People		79.425	59	1.346		
Within	Between Items	5.208	1	5.208	15.144	.000
People	Residual	20.292	59	.344		
	Total	25.500	60	.425		
Total		104.925	119	.882		
Grand Mean = 2.98						

D) Reliability test on Overconfidence :

Reliability Statistics							
Cronbach's Alpha	Cronbach's Alpha Based on Standardized Items	N of Items					
.917	.917	3					

Item-Total Statistics									
	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Squared Multiple Correlation	Cronbach's Alpha if Item Deleted				
x15	5.20	2.875	.825	.687	.886				

GJRIM Vol 6, No 1, June 2016 74

x16	5.32	2.966	.817	.672	.892
x17	5.22	2.986	.854	.729	.863

		ANOVA				
		Sum of Squares	df	Mean Square	F	Sig
Between People		124.978	59	2.118		
Within People	Between Items	13.478	2	4.239	12.352	.030
	Residual	20.856	118	1.177		
	Total	34.333	120	.178		
Total		158.311	179	.817		
Grand Mean = 2	.62					

E) Reliability Test for Anchoring Bias :

Re	liability Statistics						
Cronbach's Alpha							
	Based on						
	Standardized						
Cronbach's Alpha	Items	N of Items					
.958	.959	2					

Item-Total Statistics										
	Scale Mean	Scale Mean Scale Corrected Squared Cronbach's								
	if Item	Variance if	Item-Total	Multiple	Alpha if Item					
	Deleted Item Deleted		Correlation	Correlation	Deleted					
x18	2.67	.768	.921	.847	a •					
x19	2.60 .854		.921	.847	a •					
m 1	1 • •	1	•		•					

a. The value is negative due to a negative average covariance among items.

ANOVA									
	Sum of Squares	df	Mean Square	F	Sig				
Between People	91.867	59	1.557						

The Existence of Behavioural ... Swati Mehta and Dr. Jaydip Chaudhari 75

Within People	Between Items	.133	1	4.133	14.034	.009
	Residual	3.867	59	1.066		
	Total	4.000	60	.067		
Total		95.867	119	.806		
Grand Mean = 2.6						

F)	Relia	bility	test	: for ma	rket fa	cto	or:						
Reliabilit	y Sta	tistic	S										
			Cr	onbach	ı's Alpl	ha	Based						
Cronbac	h's A	lpha	0	n Stand	dardized Items N of Items								
		.923					.924			3			
	Inter-Item Correla						x						
		x8		x	9		x10						
x8		1.0	000		.748			821					
x9		,	748		1.000			835					
x10			821		.835		1.0	000					
					Item-	То	tal Stati	stic	S				
	Scale Mean Sca			ale Correct		ed	Squared		Cronbach's				
		Item			nce if		Item-To	otal M			tiple	Alpha if Item	
	D	eletec	1	Item D	eleted	(Correlat	ion	C	Correlation		Deleted	
x8		5	.48		3.203			.819			.687		.910
x9		5	.37		2.948			.83	.709			.900	
x10		5	.38		2.817			.88	.886 .78		.785	.85	
					AN	0	VA						
					Sum o	of		Ν	lean				
					Squar	es	df	Sq	uare		F	Sig	
Between	Peop	ole			127.39	94	59		2.159)			
Within Between Items		122.47	78	2		3.239)	13.984	.034	ł			
People		Resid	sidual		133.52	22	118		.165	5			
Total		256.00)0	120	1.1		7]			
Total			373.39	94	179		.823	3			1		
Grand M	ean =	= 2.71											1

ABOUT AUTHORS

Ms. Swati Mehta has 15 years of teaching experience at Prof. V.B. shah institute of Management, Amroli, Surat. She is teaching research and financial Management subjects. She is working as assistant professor at prof. V.B. Shah institute of management which is affiliated to Veer Narmad South Gujarat University (V.N.S.G.U), Surat since 2001. Her area of interests in research field is "Behavioral Finance".

Dr. Jaydip Chaudhari, Professor, Department of Business & Industrial Management, Veer Narmad South Gujarat University, Surat is having more than twenty years of teaching and two years of industry experience. He has published four books and more than 50 research papers have been published in reputed National and International Journals and edited books. Eleven students have been awarded Ph. D. and five students have been awarded M. Phil. Degree under his supervision. He has been serving on the various committees/bodies at various universities of Gujarat. He has visited Germany, France, Switzerland, Zech Republic, and Thailand for academic purpose.